Issues in Zonal Flows and Drift Wave Turbulence

P.H. Diamond

CMTFO and CASS, UCSD; USA

WCI Center for Fusion Theory, NFRI; Korea

ISSI Workshop, 4-9 March, 2012

Outline

A) A Look Back and A Look Around: Basic Ideas of the Drift Wave-Zonal Flow System

B) A Look Ahead: Current Applications to Selected Problems of Interest

A) A Look Back and A Look Around

Basic Ideas of the Drift Wave – Zonal Flow System

- i) Physics of Zonal Flow Formation
- ii) Shearing Effects on Turbulence Transport
- iii) Closing the Feedback Loops: Predator(s) Meet Prey

"The difference between an idea and a theory is that the first can generate a call to action and the second cannot." — Stanley Fish

Tokamaks

planets

Zonal Flows:

$$m = n = 0$$

potential fluctuations

finite k_r

Preamble II

- → Re:Plasma?
- → 2 Simple Models
- a.) Hasegawa-Wakatani (collisional drift inst.)b.) Hasegawa-Mima (DW)

a.)
$$\mathbf{V} = \frac{c}{B}\hat{z} \times \nabla \phi + \mathbf{V}_{pol}$$

 $\rightarrow m_s$

 $L > \lambda_D \rightarrow \nabla \cdot \mathbf{J} = 0 \rightarrow \nabla_{\perp} \cdot \mathbf{J}_{\perp} = -\nabla_{\parallel} J_{\parallel}$ $J_{\perp} = n |e| V_{pol}^{(i)}$ $J_{\parallel} : \eta J_{\parallel} = -(1/c) \partial_{t} A_{\parallel} - \nabla_{\parallel} \phi + \nabla_{\parallel} p_{e}$ $\text{h.} \qquad \text{h.} D_{t} A_{\parallel} \text{ v.s. } \nabla_{\parallel} \phi$ $dn_{e}/dt = 0$ $dn_{e}/dt = 0$ $dn_{e} + \frac{\nabla_{\parallel} J_{\parallel}}{-n_{0} |e|} = 0$ $DW: \nabla_{\parallel} p_{e} \text{ v.s. } \nabla_{\parallel} \phi$

<u>So H-W</u>

$$\rho_s^2 \frac{d}{dt} \nabla^2 \hat{\phi} = -D_{\parallel} \nabla_{\parallel}^2 (\hat{\phi} - \hat{n}/n_0) + \nu \nabla^2 \nabla^2 \hat{\phi}$$

 $\frac{d}{dt}n - D_0 \nabla^2 \hat{n} = -D_{\parallel} \nabla_{\parallel}^2 (\hat{\phi} - \hat{n}/n_0)$

$$D_{\parallel}k_{\parallel}^2/\omega$$

is key parameter

n.b.
$$PV = n - \rho_s^2 \nabla^2 \phi$$
 $\frac{d}{dt}(PV) = 0$
 \rightarrow total density

b.) $D_{\parallel}k_{\parallel}^2/\omega \gg 1 \to \hat{n}/n_0 \sim e\hat{\phi}/T_e$ $(m, n \neq 0)$

1

$$\frac{d}{dt}(\phi - \rho_s^2 \nabla^2 \phi) + v_* \partial_y \phi = 0 \quad \rightarrow \text{H-M}$$

n.b.
$$PV = \phi - \rho_s^2 \nabla^2 \phi + \ln n_0(x)$$

n.b. Zonal Flows: $\rho_s^2 \frac{d}{dt} \nabla^2 \phi = -\mu \nabla^2 \phi + \nu \nabla^2 \nabla^2 \phi$

An infinity of models follow:

- MHD: ideal ballooning resistive → RBM
- HW + A_{\parallel} : drift Alfven
- HW + curv. : drift RBM
- HM + curv. + Ti: Fluid ITG
- gyro-fluids
- GK

N.B.: Most Key advances appeared in consideration of simplest possible models

Preamble II

- What is a Zonal Flow?
 - n = 0 potential mode; m = 0 (ZFZF), with possible sideband (GAM)
 - toroidally, poloidally symmetric *ExB* shear flow
- Why are Z.F.'s important?
 - Zonal flows are secondary (nonlinearly driven):
 - modes of minimal inertia (Hasegawa et. al.; Sagdeev, et. al. '78)
 - modes of minimal damping (Rosenbluth, Hinton '98)
 - drive zero transport (n = 0)
 - natural predators to feed off and retain energy released by gradient-driven microturbulence

Heuristics of Zonal Flows a):

Simplest Possible Example: Zonally Averaged Mid-Latitude Circulation

- classic GFD example: Rossby waves + Zonal flow (c.f. Vallis '07, Held '01)
- Key Physics:

Rossby Wave: $\omega_{k} = -\frac{\beta k_{x}}{k_{\perp}^{2}}$ $v_{gy} = 2\beta \frac{k_{x}k_{y}}{k_{\perp}^{2}} \quad \langle \tilde{v}_{y}\tilde{v}_{x} \rangle = \sum_{k} -k_{x}k_{y} |\hat{\varphi}_{\vec{k}}|^{2}$ $\therefore v_{gy}v_{phy} < 0$ $\rightarrow \text{Backward wave!}$ $\Rightarrow \text{Momentum convergence}$ at stirring location

- … "the central result that a rapidly rotating flow, when stirred in a localized region, will converge angular momentum into this region." (I. Held, '01)
- ► Outgoing waves ⇒ incoming wave momentum flux

- Local Flow Direction (northern hemisphere):
 - eastward in source region
 - westward in sink region
 - set by β > 0
 - Some similarity to spinodal decomposition phenomena → both `negative diffusion' phenomena

Preamble VI

MFE perspective on Wave Transport in DW Turbulence

- Iocalized source/instability drive
 couple to damping ↔ outgoing wave i.e. Pearlstein-Berk eigenfunction
 couple to damping ↔ outgoing wave i.e. Pearlstein-Berk eigenfunction
 v_{gr} = -2ρ_s² (k₀k_rv_{*})/((1+k₁²ρ_s²)²)
 (v_{rE}v_{θE}) = -(c²/B²) | φ_k|² k_rk_θ < 0
- outgoing wave energy flux \rightarrow incoming wave momentum flux
 - \rightarrow counter flow spin-up!

zonal flow layers form at excitation regions

Preamble VII

• So, if spectral intensity \rightarrow net shear flow \rightarrow mean shear formation

$$S_{r} = v_{gr} \varepsilon = -\frac{2k_{\theta}k_{r}v_{*}\rho_{s}^{2}}{(1+k_{\perp}^{2}\rho_{s}^{2})^{2}}\varepsilon$$

$$S_{r} = v_{gr}\varepsilon = -\frac{2k_{\theta}k_{r}v_{*}\rho_{s}^{2}}{(1+k_{\perp}^{2}\rho_{s}^{2})^{2}}\varepsilon$$

$$(\tilde{v}_{r}\tilde{v}_{\theta}) \approx -\sum_{k}k_{r}k_{\theta} |\phi_{\vec{k}}|^{2}$$

- Reynolds stress proportional to radial wave energy flux $S\,$ via mode propagation physics (Diamond, Kim '90)
- Equivalently: $\frac{\partial}{\partial t}E + \nabla \cdot \vec{S} + (\omega_k \operatorname{Im} \varepsilon_k)E = 0$ (Wave Energy Theorem) E = wave energy

.:. Wave dissipation coupling sets Reynolds force at stationarity

- Interplay of drift wave and ZF drive originates in mode dielectric
- Generic mechanism...

Preamble VIII

- Fundamental Idea:
 - Potential vorticity transport + 1 direction of translation symmetry
 - \rightarrow Zonal flow in magnetized plasma / QG fluid
 - Kelvin's theorem is ultimate foundation
- G.C. ambipolarity breaking \rightarrow polarization charge flux \rightarrow Reynolds force
 - Polarization charge $\rightarrow \rho^2 \nabla^2 \phi = n_{i,GC}(\phi) n_e(\phi)$ polarization length scale $\rightarrow ion GC \rightarrow electron density$

- so
$$\Gamma_{i,GC} \neq \Gamma_e \implies \rho^2 \left\langle \widetilde{v}_{rE} \nabla_{\perp}^2 \widetilde{\phi} \right\rangle \neq 0$$
 (PV transport'

 \rightarrow polarization flux \rightarrow What sets cross-phase?

(M. McIntyre)

If 1 direction of symmetry (or near symmetry):

$$-\rho^{2}\left\langle \widetilde{v}_{rE}\nabla_{\perp}^{2}\widetilde{\phi}\right\rangle = -\partial_{r}\left\langle \widetilde{v}_{rE}\widetilde{v}_{\perp E}\right\rangle \quad \text{(Taylor, 1915)}$$

$$-\partial_r \langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \rangle$$
 \longrightarrow Reynolds force \longrightarrow Flow

Additional Comments I

- Heresy: Rigorous "inverse cascade" concept does not seem fundamental?! Well known that Z.F.'s develop on scale of flux, spectral inhomogeneity, without clear `scale separation'
- Indeed, forward potential enstrophy cascade seems more fundamental to PV mixing and zonal flow formation
- c.f. S. Tobias, et. al. ApJ 2011 \rightarrow ZF's appear without higher order cumulants

Additional Comments II

- Mechanisms for PV mixing: A Partial List
 - direct dissipation, as by $v\nabla^2$
 - forward potential enstrophy cascade \rightarrow couple to $_{V\!\nabla^2}$
 - local: wave absorption at critical layers, where $\omega = k_y \langle V_x(y) \rangle$ global: overlap of neighboring 'cat's eyes' islands

 \rightarrow streamline stochastization

linear and non-linear wave-fluid element interaction (akin NLLD)

Damping

- Yet more: $\frac{\partial}{\partial t} \langle v_{\perp} \rangle = -\partial_r \langle \widetilde{v}_{rE} \widetilde{v}_{\perp E} \rangle \frac{\gamma_d \langle v_{\perp} \rangle}{\gamma_d \langle v_{\perp} \rangle} + \mu \nabla_r^2 \langle v_{\perp} \rangle$ $\rightarrow damping$
- Reynolds force opposed by flow damping
- Damping:
 - Tokamak $\implies \gamma_d \sim \gamma_{ii}$
 - trapped, untrapped friction
 - no Landau damping of (0, 0)
 - Stellerator/3D $\implies \gamma_d \leftrightarrow NTV$
 - damping tied to non-ambipolarity, also
 - largely unexpored
- Weak collisionality \rightarrow nonlinear damping \rightarrow tertiary \rightarrow 'KH' of zonal flow \rightarrow

but: magnetic shear! (cost/benefit?)

 \rightarrow other mechanisms?

Zonal Flows

- Potential vorticity transport and momentum balance lacksquare
 - Example: Simplest interesting system \rightarrow Hasegawa-Wakatani
 - Vorticity: $\frac{d}{dt} \nabla^2 \phi = -D_{\parallel} \nabla_{\parallel}^2 (\phi n) + D_0 \nabla^2 \nabla^2 \phi$ D_0 classical, feeble Pr = 1 for simplicity

• Density:
$$\frac{dn}{dt} = -D_{\parallel}\nabla_{\parallel}^2(\phi - n) + D_0\nabla^2 n$$

- Locally advected PV: $q = n \nabla \phi^2$
 - PV: charge density $\begin{bmatrix} n \rightarrow \text{guiding centers} \\ -\nabla \phi^2 \rightarrow \text{polarization} \end{bmatrix}$
 - conserved on trajectories in inviscid theory dq/dt=0
 - $\begin{array}{ccc} \mathsf{PV} \mbox{ conservation} \rightarrow & \begin{array}{c} \mathsf{Freezing-in} \mbox{ law} \\ \mathsf{Kelvin's} \mbox{ theorem} \end{array} \end{array} \begin{array}{c} \rightarrow & \begin{array}{c} \mathsf{Dynamical} \\ \mbox{ constraint} \end{array}$

Zonal Flows, cont'd

- Potential Enstrophy (P.E.) balance small scale dissipation < >→ coarse graining
 LHS ⇒ d/dt (q̃²) ≡ ∂_t (q̃²) + ∂_r (Ṽ_rq̃²) + D₀ ((∇q̃)²)
 RHS ⇒ P.E. evolution (Ṽ_rq̃) (q) ⇒ P.E. Production by PV mixing / flux
 PV flux: (Ṽ_rq̃) = (Ṽ_rñ) (Ṽ_r∇²φ̃); but: (Ṽ_r∇²φ̃) = ∂_r (Ṽ_rṼ_θ)
 - \therefore P.E. production directly couples particle transport drive and Reynolds force
- Fundamental Stationarity Relation for Vorticity flux

$$\left\langle \widetilde{V}_{r} \nabla^{2} \widetilde{\phi} \right\rangle = \left\langle \widetilde{V}_{r} \widetilde{n} \right\rangle + \left(\delta_{t} \left\langle \widetilde{q}^{2} \right\rangle \right) / \left\langle q \right\rangle'$$

Reynolds force Relaxation Local PE decrement

 \therefore Reynolds force locked to driving flux and P.E. decrement; transcends quasilinear theory

Zonal Flows, cont'd

• Momentum Theorem (Charney, Drazin 1960, et. seq. P.D. et. al. '08)

$$\partial_t \left\{ (GWMD) + \left\langle V_\theta \right\rangle \right\} = -\left\langle \widetilde{V_r} \widetilde{n} \right\rangle - \delta_t \left\langle \widetilde{q}^2 \right\rangle / \left\langle q \right\rangle' - \nu \left\langle V_\theta \right\rangle$$

drag
driving flux
Local P.E. decrement

GWMD = Generalized Wave Momentum Density; $-\langle \tilde{q}^2 \rangle / \langle q \rangle$ ' (pseudomomentum)

• "Non-Acceleration Theorem"

$$\partial_{t} \left\{ (GWMD) + \langle V_{\theta} \rangle \right\} = - \left\langle \widetilde{V}_{r} \widetilde{n} \right\rangle - \delta_{t} \left\langle \widetilde{q}^{2} \right\rangle / \left\langle q \right\rangle' - \nu \left\langle V_{\theta} \right\rangle$$

$$- \text{ Absent } \left\langle \widetilde{V}_{r} \widetilde{n} \right\rangle \text{ driving flux; } \delta_{t} \left\langle \widetilde{q}^{2} \right\rangle - \text{ local potential enstrophy decrement}$$

$$\rightarrow \text{ cannot } \left\{ \begin{array}{c} \text{accelerate} \\ \text{maintain} \end{array} \right\} \quad \text{Z.F. with stationary fluctuations!}$$

 Fundamental constraint on models of stationary zonal flows! ↔ need explicit connection to relaxation, dissipation

Shearing I

- Coherent shearing: (Kelvin, G.I. Taylor, Dupree'66, BDT'90)
 - radial scattering + $\langle V_E \rangle' \rightarrow$ hybrid decorrelation

$$- k_r^2 D_\perp \rightarrow (k_\theta^2 \langle V_E \rangle'^2 D_\perp / 3)^{1/3} = 1 / \tau_c$$

- shaping, flux compression: Hahm, Burrell '94
- Other shearing effects (linear):

- spatial resonance dispersion: $\omega k_{\parallel}v_{\parallel} \Rightarrow \omega k_{\parallel}v_{\parallel} k_{\theta}\langle V_E \rangle'(r r_0) \rightarrow \text{cross phases!}$
- differential response rotation \rightarrow especially for kinetic curvature effects
- → N.B. Caveat: Modes can adjust to weaken effect of external shear (Carreras, et. al. '92; Scott '92)

Shearing II

Mechanisms to Amplify Shears

- Consider:
 - Radially propagating wave packet
 - Adiabatic shearing field

$$\frac{d}{dt}k_r = -\frac{\partial}{\partial r}\left(\omega + k_\theta \left\langle V_{E,ZF} \right\rangle\right) \implies \left\langle k_r^2 \right\rangle \uparrow \qquad \stackrel{\text{(b)}}{\longleftarrow} \bigvee_{v_y}$$

$$\omega_{\vec{k}} = \frac{\omega_*}{1 + k_\perp^2 \rho_s^2} \quad \downarrow$$

- Wave action density $N_k = E(k)/\omega_k$ adiabatic invariant
- \therefore E(k) $\uparrow \Rightarrow$ flow energy increases, due Reynolds work \Rightarrow flows amplified (cf. energy conservation)

Shearing III

Formally

- Zonal Shears: Wave kinetics (Zakharov et. al.; P.D. et. al. '98, et. seq.)
 Coherent interaction approach (L. Chen et. al.)
- $dk_r / dt = -\partial(\omega + k_\theta V_E) / \partial r$; $V_E = \langle V_E \rangle + \widetilde{V}_E$

Mean : $k_r = k_r^{(0)} - k_\theta V_E' \tau$ shearing

Zonal :
$$\langle \delta k_r^2 \rangle = D_k \tau$$

Random
shearing $D_k = \sum_q k_{\theta}^2 |\widetilde{V}_{E,q}'|^2 \tau_{k,q}$

• Mean Field Wave Kinetics $\frac{\partial N}{\partial t} + (\vec{V}_{gr} + \vec{V}) \cdot \nabla N - \frac{\partial}{\partial r} (\omega + k_{\theta} V_{E}) \cdot \frac{\partial N}{\partial \vec{k}} = \gamma_{\vec{k}} N - C\{N\}$ $\Rightarrow \frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_{r}} D_{k} \frac{\partial}{\partial k_{r}} \langle N \rangle = \gamma_{\vec{k}} \langle N \rangle - \langle C\{N\} \rangle$ L Zonal shearing21

- Wave ray chaos (not shear RPA) underlies $D_k \rightarrow$ induced diffusion
 - Induces wave packet dispersion
- Applicable to ZFs and GAMs
- $\tau_{k,q} \equiv$ coherence time of wave packet **k** with shear mode **q**

₹UCSD

Shearing IV

- Energetics: Books Balance for Reynolds Stress-Driven Flows!
- Fluctuation Energy Evolution Z.F. shearing

$$\int d\vec{k} \,\omega \left(\frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_r} D_k \frac{\partial}{\partial k_r} \langle N \rangle \right) \Rightarrow \frac{\partial}{\partial t} \langle \varepsilon \rangle = -\int d\vec{k} V_{gr}(\vec{k}) D_{\vec{k}} \frac{\partial}{\partial k_r} \langle N \rangle \qquad V_{gr} = \frac{-2k_r k_\theta V_* \rho_s^2}{\left(1 + k_\perp^2 \rho_s^2\right)^2}$$

Point: For $d\langle \Omega \rangle / dk_r < 0$, Z.F. shearing damps wave energy

N.B.: For zonal shears, $N \sim \Omega$

N.B.: Wave decorrelation essential:

(c.f. Gurcan et. al. 2010)

Equivalent to PV transport/mixing

• Fate of the Energy: Reynolds work on Zonal Flow

Modulational $\partial_t \delta V_{\theta} + \partial \left(\delta \left\langle \widetilde{V}_r \widetilde{V}_{\theta} \right\rangle \right) / \partial r = -\gamma \delta V_{\theta}$ Instability

$$\delta \left\langle \widetilde{V}_r \widetilde{V}_{\theta} \right\rangle \sim \frac{k_r k_{\theta} \delta \Omega}{\left(1 + k_{\perp}^2 \rho_s^2\right)^2}$$

- Bottom Line:
 - Z.F. growth due to shearing of waves
 - "Reynolds work" and "flow shearing" as relabeling \rightarrow books balance
 - Z.F. damping emerges as critical; MNR '97

Feedback Loops I

- Closing the loop of shearing and Reynolds work
- Spectral 'Predator-Prey' equations

Prey
$$\rightarrow$$
 Drift waves, $\langle N \rangle$
 $\frac{\partial}{\partial t} \langle N \rangle - \frac{\partial}{\partial k_r} D_k \frac{\partial}{\partial k_r} \langle N \rangle = \gamma_k \langle N \rangle - \frac{\Delta \omega_k}{N_0} \langle N \rangle^2$
Predator \rightarrow Zonal flow, $|\phi_q|^2$
 $\frac{\partial}{\partial t} |\phi_q|^2 = \Gamma_q \left[\frac{\partial \langle N \rangle}{\partial k_r} \right] |\phi_q|^2 - \gamma_d |\phi_q|^2 - \gamma_{NL} [|\phi_q|^2] |\phi_q|^2$

₹UCSD

Feedback Loops II

• DW-ZF turbulence 'nominally' described by predator-prey

 $\begin{array}{l} \frac{\partial}{\partial t} & \text{growth suppression self-NL} \\ \frac{\partial}{\partial t} N = \gamma N - \alpha V^2 N - \Delta \omega N^2, \\ \frac{\partial}{\partial t} V^2 = \alpha N V^2 - \gamma_{\rm d} V^2 - \gamma_{\rm NL} (V^2) V^2. \\ & \text{stress drive ZF damping NL ZF damping} \end{array}$

Prey ≡ DW's (N) ↔ forward enstrophy scattering (induced diffusion to high k_r) Predator ≡ ZF's (V²) ↔ inverse energy scattering

Configuration \Rightarrow coupling coeffs.

• Can have:

- Fixed point
$$(\gamma/\Delta\omega); \quad (\gamma_d/\alpha, [(\gamma - \Delta\omega\gamma_d/\alpha)/\alpha]^{1/2})$$

- Limit cycle states,
- depends on ratios of V dampings \Rightarrow phase lag
- Major concerns/omissions
 - Mean ExB coupling?
 - Turbulence drive $\gamma \Rightarrow$ flux drive \Leftrightarrow avalanching? \Rightarrow not a local process
 - 1D \Rightarrow spatio-temporal problem (fronts, NL waves) ? \Rightarrow barrier width
 - NL flow damping ?

N.B. Suppression + Reynolds terms $\alpha V^2 N$ cancel for TOTAL momentum, energy

Feedback Loops III

Early simple simulations confirmed several aspects of modulational predator-prey dynamics

B) A Look Ahead

Current Applications to Selected Problems of Interest

Progress

- i) Zonal Flows with RMP
- ii) β -plane MHD and the Solar Tachocline

Provocation

- i) The PV and ExB Staircase
- ii) Zonal flows and spreading: What is the Interaction?

Pinnacle

Dynamics of the L \rightarrow H Transition

"What bifurcations, made by funksters, like mushrooms sprout both far and wide"

— Vladimir Sorokin, in "Day of the Oprichnik"

Progress I: ZF's with RMP (with M. Leconte)

- ITER 'crisis du jour': ELM Mitigation and Control
- Popular approach: RMP
- ? Impact on Confinement?

 ⇒ RMP causes drop in fluctuation LRC, suggesting reduced Z.F. shearing
 ⇒ What is "cost-benefit ratio" of RMP?

- Physics:
 - in simple H-W model, polarization charge in zonal annulus evolves according:

$$\frac{dQ}{dt} = -\int dA \left[\left\langle \widetilde{v}_x \widetilde{\rho}_{pol} \right\rangle + \left(\frac{\delta B_r}{B_0} \right)^2 D_{\parallel} \frac{\partial}{\partial x} \left(\left\langle \phi \right\rangle - \left\langle n \right\rangle \right) \right]_{r_1}^{r_2} \qquad \left\langle B_r J_{\parallel} \right\rangle = \left\langle B_r^2 \right\rangle \left\langle J_r \right\rangle + \left\langle \widetilde{B}_r \widetilde{J}_{\parallel} \right\rangle \longleftarrow \text{ fluctuations fluctuations fluctuations}$$

- Key point: δB_r of RMP induces radial electron current \rightarrow enters charge balance

Progress I, cont'd

- Implications
 - $-\delta B_r$ linearly couples zonal $\hat{\phi}$ and zonal \hat{n}
 - Weak RMP \rightarrow correction, strong RMP $\rightarrow \langle E_r \rangle_{ZF} \cong -T_e \partial_r \langle n \rangle / |e|$
- Equations: $\frac{d}{dt}\delta n_q + D_T q^2 \delta n_q + ib_q (\delta \phi_q (1-c)\delta n_q) D_{RMP} q^2 (\delta \phi_q \delta n_q) = 0$ $\frac{d}{dt}\delta \phi_q + \mu \delta \phi_q a_q (\delta \phi_q (1-c)\delta n_q) + \frac{D_{RMP}}{\rho_s^2} (\delta \phi_q \delta n_q) = 0$

 E_{ZF}/E_L vs E/E_L for various RMP coupling strengths

Progress II : β-plane MHD (with S.M. Tobias, D.W. Hughes)

Model

- Thin layer of shallow magneto fluid, i.e. solar tachocline
- β -plane MHD ~ 2D MHD + β -offset i.e. solar tachocline

 $\partial_t \nabla^2 \phi + \nabla \phi \times \hat{z} \cdot \nabla \nabla^2 \phi - \nu \nabla^2 \nabla^2 \phi = \beta \partial_x \phi + B_0 \partial_x \nabla^2 A + \nabla A \times \hat{z} \cdot \nabla \nabla^2 A + \tilde{f}$

 $\partial_t A + \nabla \phi \times \hat{z} \cdot \nabla A = B_0 \partial_x \phi + \eta \nabla^2 A \qquad \vec{B}_0 = B_0 \hat{x}$

- Linear waves: Rossby Alfven $\omega^2 + \omega \beta \frac{k_x}{k^2} k_x^2 V_A^2 = 0$ (R. Hide)
- cf P.D., et al; Tachocline volume, CUP (2007)
 S. Tobias, et al: ApJ (2007)

Progress II, cont'd

Observation re: What happens?

- Turbulence \rightarrow stretch field $\rightarrow \langle \widetilde{B}^2 \rangle >> B_0^2$ i.e. $\langle \widetilde{B}^2 \rangle / B_0^2 \sim R_m$ (ala Zeldovich)
- Cascades : forward or inverse?
 - MHD or Rossby dynamics dominant !?

• PV transport:
$$\frac{dQ}{dt} = -\int dA \langle \tilde{v}\tilde{q} \rangle \longrightarrow$$
 net change in charge content
due PV/polarization charge flux

Now
$$\frac{dQ}{dt} = -\int dA \left[\left\langle \widetilde{v} \widetilde{q} \right\rangle - \left\langle \widetilde{B}_r \widetilde{J}_{\parallel} \right\rangle \right] = -\int dA \partial_x \left\{ \left\langle \widetilde{v}_x \widetilde{v}_y \right\rangle - \left\langle \widetilde{B}_x \widetilde{B}_y \right\rangle \right\} \longrightarrow$$
 Remit

PV flux current along tilted lines

Taylor:
$$\left\langle \widetilde{B}_{x}\widetilde{J}_{\parallel} \right\rangle = -\partial_{x}\left\langle \widetilde{B}_{x}\widetilde{B}_{y} \right\rangle$$

- Reynolds mis-match
- vanishes for
 Alfvenized state

Progress II, cont'd

Progress II, cont'd

- Control Parameters for \vec{B} enter Z.F. dynamics Like RMP, Ohm's law regulates Z.F.
- Recall

$$-\langle \widetilde{v}^2 \rangle \operatorname{vs} \langle \widetilde{B}^2 \rangle \\ -\langle \widetilde{B}^2 \rangle \sim B_0^2 R_m \longrightarrow \text{ origin of } B_0^2 / \eta \text{ scaling !}$$

- Further study \rightarrow differentiate between :
 - cross phase in $\langle \widetilde{v}_r \widetilde{q} \rangle$ and O.R. vs J.C.M
 - orientation : $\vec{B} \parallel \vec{V}$ vs $\vec{B} \perp \vec{V}$
 - spectral evolution

No ZF observed

? How does system solve the pattern selection problem of Zonal Flow vs Avalanches?

Provocation I: Staircase and Nonlocality (with G. Dif-Pradalier, et. al.)

Analogy with geophysics: the ' $\textbf{E} \times \textbf{B}$ staircase'

$$Q = -n\chi(r)\nabla T \implies Q = -\int \kappa(r, r')\nabla T(r') \,\mathrm{d}r'$$

- ' $\mathbf{E} \times \mathbf{B}$ staircase' width \equiv kernel width Δ
- coherent, persistent, jet-like pattern
 the 'E × B staircase'
- staircase NOT related to low order rationals!

Dif-Pradalier, Phys Rev E. 2010

Guilhem DIF-PRADALIER

APS-DPP meeting, Atlanta, Nov. 2009

Avalanches ↔ 'Non-locality'

• Non-locality?

$$Q = -\chi \nabla T \implies Q = -\int dr' \int dt' \mathcal{K}(r - r', t - t') \nabla T(r', t')$$

$$\Delta r_{K} \gg \Delta r_{cor} \quad \tau_{K} \gg \tau_{cor}$$

G. Dif-Pradalier 2010

$$Q = -\int dr' \mathcal{K}(r - r') \nabla T(r')$$

$$\mathcal{K} \cong S^{2} / [(r - r')^{2} + \Delta_{aval}^{2}]$$

$$\mathcal{K} \cong S^{2} / [(r - r')^{2} + \Delta_{aval}^{2}]$$

- Non-locality and/or Nonlinearity $(\partial_t I - \partial_r \chi I \partial_r I = \gamma I - \alpha I^2)$ Physics? Local but fast

₹UCSD

Provocation I, cont'd

• The point:

- fit:
$$Q = -\int dr' \kappa(r, r') \nabla T(r')$$
 $\kappa(r, r') \sim \frac{S^2}{(r - r')^2 + \Delta^2} \rightarrow \text{some range in exponent}$

- $\Delta >> \Delta_c$ i.e. $\Delta \sim$ Avalanche scale >> $\Delta_c \sim$ correlation scale

- Staircase 'steps' separated by $\Delta ! \rightarrow$ stochastic avalanches produce quasi-regular flow pattern!? N.B.
 - The notion of a staircase is not new especially in systems with natural periodicity (i.e. NL wave breaking...)
 - What IS new is the connection to stochastic avalanches, independent of geometry
- What is process of self-organization linking avalanche scale to zonal pattern step?
 - i.e. How extend predator-prey feedback model to encompass both avalanche and zonal flow staircase? Self-consistency is crucial!

- The Lessons:
 - Mesoscale structure formation is a consequence of multiple feedbacks in space and time
 - System can solve the pattern selection problem of
 ZF's vs avalanches by spatial decomposition into
 'staircase steps' and avalanche zones
 - Feedback loop physics of paramount importance!

C) Pinnacle

Z.F.'s and the Dynamics of the L \rightarrow H Transition

- $L \rightarrow H$ transition (F. Wagner '82) has driven considerable research on shear flows
- Tremendous progress in recent experiments:
 - G. Conway, T. Estrada and C. Hidalgo,
 - L. Schmitz, G. McKee and Z. Yan,
 - K. Kamiya and K. Ida, G.S. Xu,
 - A. Hubbard, S. J. Zweben
- Seems like we are almost there ...

BUT: "It ain't over till its over" – an eastern (division) Yogi

What is the H-mode?

What is a transport barrier?

- L-H threshold Power in low density region (typically lower than $3 \times 10^{19} \text{m}^{-3}$)
- I-phase as a transient phase between low and high confinement, i.e. $L \rightarrow I \rightarrow H$ transition.
- Limit cycle oscillation in prior to the transition in TJ-II[Estrada '10 EPL], NSTX[Zweben '10 PoP], ASDEX Upgrade[Conway '11 PRL], EAST[Xu '11 PRL]
- Radial structure of mean flow shear in the I-phase limit-cycle oscillation
 - Dual shear layer in DIII-D [Schmitz, TTF '11]
- Poloidal rotation involving in the transition process in JT-60U [Kamiya '10 PRL]

Flows and turbulence dynamics

The Oscillating Flow Layer Widens Radially (Frequency Decreases) - Steady Flow after Final H-Mode Transition

A weak E×B flow layer exists in L-mode (L-mode shear layer)

At the I-phase transition, the E×B flow becomes more negative first near the separatrix, flow layer then propagates inward

The flow becomes steady at the final Hmode transition (after one final transient)

L. Schmitz TTF'11

During the I-phase, the Mean Shear $<\omega_{EXB}$ > Increases with Time and Eventually Dominates

L. Schmitz TTF'11

- \rightarrow EAST Results (G.S. Xu, et.al., '11)
- \rightarrow hardened, reciprocating probes
- \rightarrow quasi-periodic Er oscillation (f < 4 kHz), with associated turbulence modulation
- $\rightarrow E_r$ and $\langle \tilde{v}_r \tilde{v}_\theta \rangle_E$ exhibits correlated spikes prior to transition
- \rightarrow support key role of zonal flow in L \rightarrow H transition

Pinnacle, cont'd

 VP coupling 	$\partial_t \varepsilon = \varepsilon N - a_1 \varepsilon^2 - a_2 V^2 \varepsilon - a_3 V_{ZF}^2 \varepsilon$	$\mathcal{E} \equiv DW$ energy
$-\gamma_L drive$	$\partial V_{} = h_{-} \frac{\varepsilon V_{ZF}}{$	V _{zF} ≡ ZF shear
+ $\langle V_E \rangle'$	$b_{t} V_{ZF} = b_{1} + b_{2} V^{2}$	$N \equiv \nabla \langle P \rangle \equiv pressure gradient$
Z.F.	$\partial_t N = -c_1 \varepsilon N - c_2 N + \langle Q \rangle + \widetilde{Q}$	$V = dN^2$ (radial force balance)

- Simplest example of 2 predator + 1 prey problem (E. Kim, P.D., 2003 see also: Malkov,
 - i.e. prey sustains predators predators limit prey f = 0 usual feedback now: $2 \text{ predators } (ZF, \nabla \langle P \rangle) \text{ compete}$ $\nabla \langle P \rangle \text{ as both drive and predator}$ avalanches \rightarrow multiplicative noise
- Relevance: LH transition, ITB
 - Builds on insights from Itoh's, Hinton
 - $ZF \Rightarrow$ triggers
 - $\nabla \langle P \rangle \Rightarrow$ 'locking in'

Multiple predators are possible

P.D., 2009)

Feedback Loops III, cont'd

Solid - E

Dotted - V_{ZF}

Dashed - $\nabla \langle P \rangle$

• Observations:

- ZF's trigger transition, $\nabla \langle P \rangle$ and $\langle V \rangle$ lock it in
- Period of dithering, pulsations during ZF, $\nabla \langle P \rangle$ oscillation as Q \uparrow
- − ∇ (P) \Leftrightarrow ZF interaction \Rightarrow effect on wave form

Slow Power Ramp Indicates L \rightarrow I \rightarrow H Evolution.

Cycle is propagating nonlinear wave in edge layer

- Turbulence intensity peaks just prior to transition.
- Mean shear (i.e. profiles) also oscillates in I-phase.

Mean shear location comparisons indicate inward propagation.

Pinnacle, cont'd

- For $P \sim P_{th}$, cyclic / dithering oscillations observed in flows, turbulence
- Multi-shear flow competition at work in transition process
- Flow structure evolves as transition progresses
- Many aspects of dynamics well described by multi-predator shearing models ala' K+D
- Variety of results, hints, suggestions, proclamations as to precise trigger... GAM, ZF, Mean *ExB*₀ Flow, Mean Poloidal Flow...

Need there be a unique route to transition?

If you build it, they will came...

Basic experiment:

- large, rotating, \sim QG (tilted caps) liquid metal or equivalent with $R_m \sim 100$

- extend domain of PPPL experiment of H. Ji, et.al.

- aims:

- MHD dynamics of zonal flows, jets
- zonal fields, QG dynamo (L-Smith, Tobias)
- aspects of MHD momentum transport (i.e. solar tachocline physics)

'Confinement' experiments: (EAST?)

- high power, low au_{ext} ITB

- multi-channel DBS imaging study of q_{min} region, on meso-scale

- -multi-channel CHS to eliminate mean flows (including poloidal)
- high space-time resolution profile evolution, i.e. corrugations?

Conclusion

 There are no conclusions. This topic is alive and well, and will evolve dynamically.

 Cross-disciplinary dialogue with GFD/AFD communities has been very beneficial and should continue!

